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Abstract - During the past decade, the scientific 
community has witnessed the rapid accumulation of gene 
sequence data and data related to physiology and 
biochemistry of organisms. Bioinformatics tools used for 
efficient and computationally intensive analysis of genetic 
sequences require large-scale computational resources to 
accommodate the growing data. Grid computational 
resources such as the Open Science Grid and TeraGrid have 
proved useful for scientific discovery. GADU is a high-
throughput computational system developed to automate the 
steps involved in accessing the Grid resources for running 
bioinformatics applications. This paper describes the 
requirements for building an automated scalable system 
such as GADU that can run jobs on different Grids. The 
paper describes the resource-independent configuration of 
GADU using the Pegasus-based Virtual Data System that 
makes high-throughput computational tools interoperable 
on heterogeneous Grid resources. The paper also highlights 
the features implemented to make GADU a gateway to 
computationally intensive bioinformatics applications on the 
Grid. The paper will not go into the details of problems 
involved or the lessons learned  in using individual Grid 
resources as it has already be published in our paper on 
GNARE and will focus primarily on the architecture that 
makes GADU resource independent and interoperable 
across heterogeneous Grid resources. 

 
Index Terms – Interoperability of Grid Resources, 

multiple grid resources, Bioinformatics, high-throughput 
computations. 
 
1. Introduction 
 

Bioinformatics is a “science of big numbers”. It 
utilizes high-throughput computational analysis of 
genomic sequences for discovering evolutionary patterns 
underlying complex biological processes that produced 
the diversity of life on this planet. Essential for this 
approach is comparative and evolutionary analysis of a 
wide spectrum of phylogenetically diverse organisms, in 
order to that provide understanding of the adaptive 
mechanisms that led to diversification of biological 
systems on all levels of their organization: genomic, 
metabolic, and phenotypic.  

When properly understood, these variations can 
present the answers to the following questions: How do 
differences observed on the genomic level affect the 

function of biological systems? What allows thermophilic 
organisms to sustain life at the temperatures above 100 
degrees C? What differences on the genomic level lead to 
emergence of genetic diseases? Answering such questions 
is fundamentally important for further progress in 
biotechnology, medicine and bioremediation. 

There has been an unprecedented accumulation of 
gene sequence data and data related to the physiology and 
biochemistry of organisms during the past decade. To 
date, 343 genomes have been sequenced, and genomes of 
more than 1500 organisms are at various levels of 
completion [1]. This wealth of genomic information will 
dramatically accelerate progress toward a comprehensive 
understanding of the genetic mechanisms involved in 
diverse biochemical processes pertinent to 
bioremediation, medicine, biotechnology and agriculture. 

Efficiency and accuracy of genetic sequence analysis 
are achieved by the use of diverse CPU-intensive 
bioinformatics tools and algorithms (e.g., analysis of 
global similarities [2] [3] [4], domain and motif analysis 
[5] [6] [7], analysis of the relevant structural [8] [9], and 
functional data). Running these tools on the rapidly 
growing data is a time-consuming process and needs 
high-throughput computations to get results in a timely 
fashion. The aggregated and distributed computational 
and storage infrastructure of the Grids such as the Open 
Science Grid (OSG) [10] and TeraGrid [11] offers an 
ideal platform for mining biological information at this 
large scale. 

We have developed a system called GADU [12], 
which has access to the OSG, TeraGrid and DOE Science 
Grid [13] resources. The opportunistic availability and the 
different architectures and environments of these 
resources make it extremely difficult to use them 
simultaneously through a single common system. GADU 
addresses these issues by providing a resource-
independent system that can execute the bioinformatics 
applications as workflows simultaneously on these 
heterogeneous Grid resources. GADU is easily scalable to 
add new Grid resources or individual clusters into its pool 
of resources, thus providing more high-throughput 
computational power to its scientific applications.  
 
 
 



2. GADU, the Genome Analysis Server 
 

The Genome Analysis and Database Update system, 
GADU, is an automated, scalable, high-throughput 
computational workflow engine that executes 
computationally intensive workflows for the analysis of 
sequence data on the Grid and performs updates to the 
integrated database. The integrated database [12] 
warehouses sequence data and annotations from the 
monitored public databases as well as the results of data 
analyses using GADU. 

The interpretation of every newly sequenced genome 
involves the analysis of sequence data by a variety of 
computationally intensive bioinformatics tools, the 
execution of result and annotation parsers, and other 
intermediate data-transforming scripts. GADU acts as a 
gateway to the Grid, handling all the high-throughput 
computations. GADU is implemented in two modules, 
analysis server and an update server. The analysis server 
automatically creates workflows in the abstract Virtual 
Data Language, based on predefined templates that it 
executes on distributed Grid resources. The update server 
updates the integrated database with recently changed 
data from a set of monitored public databases (currently 
including NCBI RefSeq [14], PIR [15], InterPro [6], and 
KEGG [16]). 

GADU has successfully used Grid resources with 
different architectures and software environments like the 
64-bit processors in TeraGrid and 32-bit processors in the 
Open Science Grid or DOE Science Grid. GADU 
executes its parallel jobs simultaneously on these 
different Grid resources. It expresses the workflows in the 
form of a directed acyclic graph (DAG) and executes it 
on a specified Grid site using Condor-G [17]. GADU uses 
the GriPhyN Virtual Data System [18] to express, 
execute, and track the results of the workflows that helps 
in using the grid resources.  
 
3. Use of the Virtual Data System in GADU 
 

In this section we introduce the use of the Virtual Data 
System (VDS) [18] to generate, execute, and control the 
workflows in Grid environments. We look at the features 
of VDS that makes GADU a resource-independent 
system that can use multiple Grids of different 
architectures and environments. 

VDS provides tools to express, execute, and track the 
workflows that consist of application invocations. The 
workflows are expressed in a location-independent, high-
level abstract language called Virtual Data Language 
(VDL). VDL frees the workflow from specifying details 
of the location of files and programs in a distributed 
environment. 

VDS uses Pegasus [19] as a planner component to 
generate executable forms of the workflow expressed 
using VDL. Pegasus maps an abstract workflow 
expressed in VDL to a specified Grid resource. It 
generates a concrete workflow or a fully planned Condor 
DAG from the initial abstract workflow. These concrete 
workflows generated using VDS can be executed in a 
variety of environments ranging from the desktop to 
Grids such as the Open Science Grid and TeraGrid or any 
individual computing cluster. 
 
3.1. Representing Transformations and 
Resources 
 

The Virtual Data Language expresses an abstract 
workflow as transformations and derivations.  
Transformations are general descriptions of each 
executable and provide information about the input and 
output parameters required for each executable.  The 
transformation does not provide the physical locations of 
the input and output files or the actual parameters going 
into the executable. Rather, it provides a template to the 
derivations that provides the physical locations and 
parameters of the applications. 

 
#SITE            Transformation       PFN  TYPE 
ANL_Jazz        BLAST       /soft/apps/BLAST/bin/blastall null 
ANL_Jazz        Blocks       /soft/apps/run-Blocks.pl null 
ANL_Jazz        Chisel       /soft/apps/chisel/runChisel.pl null 
ANL_Jazz        IPRSCAN   /soft/apps/iprscan_wrapper.pl null 
ANL_Jazz        globus-url-copy /soft/apps/packages/globus-
2.2.4/bin/globus-url-copy 
GLOBUS_LOCATION=/soft/apps/packages/globus-2 
.2.4/;LD_LIBRARY_PATH=/soft/apps/packages/globus-
2.2.4/lib;PATH=/soft/apps/packages/globus-2.2.4/bin 

Figure 1: Sample Transformation Catalog on 
Jazz Cluster 

 
pool ANL_Jazz { 
 
  lrc "rls://gnare.mcs.anl.gov" 
  gridftp "gsiftp:// jmayor1.lcrc.anl.gov:2812/soft/apps/gadu" 
  gridlaunch "/soft/apps/gadu/bin/kickstart" 
  workdir "/soft/apps/gadu/vdldata" 
  universe vanilla "jmayor1.lcrc.anl.gov:2121/jobmanager-pbs" 
  universe globus "jmayor1.lcrc.anl.gov:2121/jobmanager-pbs"  
  universe transfer " jmayor1.lcrc.anl.gov:2812/jobmanager-fork" 
} 
…. 

Figure 2: Sample Site Catalog on Jazz Cluster 
 

 
In VDS, each transformation or executable of a 

workflow installed on a high-throughput computing 
resource and its path on the remote resource is listed in a 
Transformation Catalog (TC) file as shown in the Figure 
1. The TC file contains transformation information for 
each grid location, including the Grid site name, 



transformation name, and physical location on the Grid. 
Each site name is mapped into the Site Catalog (SC) file 
containing information about the gatekeeper, job 
manager, and remote working directory, as shown in 
Figure 2. These two files together provide all the required 
information for a planner software to create the workflow.  

Figures 1 and 2 provide a sample of the TC and SC 
files respectively showing information for the Jazz cluster 
at Argonne National Laboratory. 
 
3.2. Executing the Workflows 
 

The Pegasus planner in VDS maps the transformations 
of an abstract workflow to an execution resource based 
on the information derived from TC and SC files.  
Pegasus uses dynamic sources such as Monitoring and 
Discovery Service (MDS) [20] and Replica Location 
Service (RLS) [21] to map the data files used by the 
transformations during execution. If the transformations 
of a workflow are mapped on different resources and 
don’t share the data, Pegasus adds new nodes in the 
workflow to transfer the data between the tasks. The 
resulting output in the form of a Condor DAG is 
submitted to a remote computing resource using the 
Condor-G’s DAGMan. Condor-G and DAGMan form a 
powerful combination to execute a workflow on any Grid 
resource that provides a Globus Grid Resource Allocation 
and Management (GRAM) interface. 
 
3.3. Using GADU on the Jazz Cluster 
 

The GADU analysis server has automated all the steps 
involved in expressing and executing the bioinformatics 
application workflows using VDS as explained in the 
previous sections.  GADU used VDS to execute the 
workflows involving bioinformatic applications such as 
Blast, Blocks, Pfam, Chisel, and InterPro for the first time 
on Jazz, a 350-node computing cluster that is part of the 
DOE Science Grid resources. The Jazz cluster is located 
at Argonne National Laboratory. 

 
In order to execute a workflow on Jazz, the following 

steps were performed: 
 Automate the steps involved in expressing, 
generating, and executing the application 
workflows inside GADU’s analysis server. 

 Install all the standard Grid middleware 
components such as Condor, Globus, and GridFTP 
on the submit machine. 

 Install the Pegasus-based Virtual Data System and 
a RLS server for data items. 

 Create a Globus GRAM interface on the Jazz 
cluster by coordinating with the site administrator. 

 Install all the tools involved in the workflows on 
the remote cluster. 

 Update the TC and SC file representing the 
transformations and the site specific information 
(shown in Fig 1 and Fig 2). 

 
One of the main functions of GADU is to 

automatically perform most of these tasks in setting up 
the infrastructure. GADU then executes and monitors the 
workflows involving bioinformatics applications. Figure 
3 represents GADU’s configuration and the steps 
required to generate and execute a workflow on the Jazz 
cluster. All the steps performed on the submit host are 
automated by GADU. 
 
3.4. Resource-Independent Configuration 
 

GADU provides a resource-independent configuration 
to execute the workflows on the Grid. It can submit jobs 
remotely to a resource, as long as the resource provides a 
Globus GRAM interface (for example, the Jazz cluster). 
All the transformations of a workflow are expressed as 
Condor submit files and a DAG using Pegasus. The 
Condor-G submits the workflow to a remote resource 
using the GRAM interface and also monitors the 
workflow.  

 

 

 

 
 

In the case of Jazz as well as most of the Grid 
resources containing multiple compute nodes, the 
gatekeeper acts as the single point of job submissions to 
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Figure 3: Workflow generation and execution on 
Jazz. 



the resource. This gatekeeper provides the Globus GRAM 
interface and is responsible for submitting the job to the 
local job management system (PBS, LSF, Condor, etc.), 
which executes the jobs on the compute nodes. 

GADU’s ability to run the jobs on any high-
throughput computational resource that provides a 
GRAM interface makes it scalable to accommodate more 
resources.  

Figure 3 represents the configuration of GADU as a 
resource-independent system for generating, executing, 
and monitoring the workflows on a multinode cluster 
resource. 
 
4. Accessing the Open Science Grid and 
TeraGrid 
 

This section explains GADU’s ability to easily 
accommodate new Grid sites into its pool of resources. It 
also explains how GADU automatically manages the 
dynamic changes in the state of the Grid resources using 
monitoring and information services along with the 
authentication and access models used at different Grids. 

Open Science Grid and TeraGrid are large-scale Grid 
computing infrastructures that provide computational 
resources for scientific discovery. TeraGrid was 
completed in September 2004, bringing over 40 teraflops 
of computing power and nearly 2 petabytes of rotating 
storage. It is a combined resource from eight different 
partner sites. The Open Science Grid Consortium was 
formed in 2004 to enable diverse scientific communities 
(physics, chemistry, astrology, etc.) to access the shared 
resources from a common Grid infrastructure. Currently it 
has a collective number of more than 18000 CPUs 
contributed by more than 60 institutions.  

Each site in the OSG provides a set of fundamental 
services for the users to run their jobs. The OSG software 
stack consists of middleware like Globus and Condor 
technologies packaged into a toolkit called Virtual Data 
Toolkit (VDT) [22]. The VDT package installed on the 
Grid resources provides a Globus GRAM interface for the 
users to submit and run their jobs remotely. Thus, it fits 
easily into GADU’s framework. GADU treats each of the 
OSG site as an individual resource and installs its 
scientific applications on all OSG resources that can be 
accessed. After each installation, the site-specific 
information such as applications installation directory on 
the remote resources, Globus location, gatekeeper name, 
and job-manager information. is collected and added in 
the TC and SC files of VDS. 

Similar to OSG, TeraGrid resources at the individual 
sites are managed autonomously, and the architecture is 
built by deploying Grid service layers that contain 
software components such as GRAM, Condor-G, 
GridFTP, GASS, and MDS. TeraGrid uses the NSF 

Middleware Initiative’s (NMI) software release as the 
Grid software base. Similar to OSG, TeraGrid also uses 
GRAM protocol for secure remote access to its resources. 
Thus, through the use of GRAM interface, GADU 
automatically adds TeraGrid sites as individual sites into 
the SC file. This addition gives GADU access to run its 
applications on the TeraGrid resources. 

GADU was invited to use OSG resources to run 
bioinformatics applications and form a virtual 
organization (VO). OSG resources are used on an 
opportunistic availability basis, and TeraGrid resources 
are used through a proposal requesting allocations or 
CPU hours. 
 
4.1. Automated Site Management in GADU 
 

GADU automates all the steps involved in adding a 
new site as well as maintaining all the sites where it can 
submit its workflows for high-throughput computing.  

I. Adding a New Site. 
In order to add a new site, GADU obtains the required 

information about the remote resource (i.e., gatekeeper 
contact string, job-managers, application and data storage 
directories, Globus path environment) from monitoring 
and information services such as GridCat [23] and MDS 
and adds it to the TC and SC files. The architecture of 
each site is also collected from these information services. 
For example, most of the sites in OSG are IA32 based 
cluster, whereas TeraGrid has a variety of different 
clusters with IA32, IA64 and other architectures. Based 
on these hardware specifications, GADU installs the 
appropriate scientific applications by sending a packaged 
tar file onto the new remote resource. All these steps are 
automatically performed by GADU. It is explained in 
detail in our previous publication on GNARE. 

II. Maintaining the Existing Sites 
Currently GADU has access to more than 70 

heterogeneous computational resources with different 
architectures and environments that are listed in its SC 
file. The SC file contains resources from OSG and 
TeraGrid, each having a different architecture and 
environment. Individual clusters such as Jazz are also 
used by GADU. With so many different resources, and all 
being managed autonomously by different institutions, 
the access information of these resources may change or 
update regularly, making it very difficult to track. GADU 
can handle these changes automatically and update the 
new access information periodically for each site. 
III. Grid Monitoring and Information Services 

In the cases of the OSG and TeraGrid, which contain 
multiple sites whose status may change without notice, it 
is important to have services that provide the information 
of any changes. These changes include addition of a new 
site or change of gatekeeper, job-managers, and 
installation directories. Additionally, it is necessary to 



monitor the status of all the sites to show the number of 
nodes available, number of jobs running, load ,and other 
useful information about the remote site. 

Both the OSG and TeraGrid have their own systems 
providing all the required information to the clients. The 
OSG uses GridCat, MonaLISA [24] and some other 
services whereas the TeraGrid uses Inca, GPIR and MDS 
based information services. GADU uses these services 
provided by OSG and TeraGrid at various levels. GADU 
regularly monitors these services for any change in the 
state of access and automatically updates the changes. It 
also triggers reinstallation of the application packages 
whenever required. For individual clusters like Jazz that 
don’t provide any monitoring or information services, the 
information has to be manually identified and recorded. 
 

 
 
Figure 4 shows the various components of GADU as 

well as the information service and Grid sites from 
different Grid projects. 
 
4.2. Authentication at Various Resources 
 

GADU uses an X.509 certificate-based authentication 
scheme that utilizes the Grid Security Infrastructure (GSI) 
[25] protocol.  

In the OSG, every user belongs to a virtual 
organization, which runs a Virtual Organization 

VOMS server, GADU VO. User certificates from the 
GADU users are added to the VOMS, which in turn gets 
updated by all the Grid sites of OSG providing access to 
the users. The TeraGrid, on the other hand, provides 
individual logins to all its users. A user installs his 
certificates in the grid-mapfile by logging into all the 
TeraGrid sites. For individual clusters such as Jazz, all the 
user’s certificates are installed by the site administrator.  

Once all the user’s certificates are installed on the

Membership Service (VOMS). GADU runs its own 

 
reso

.3. Site Selection across Grids  

GADU’s access to a large pool of computational 
res

nces are submitted to 
GA

de

urces, GADU can submit the user’s jobs securely 
through the GRAM interface, as explained in the previous 
sections. 
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ources and their opportunistic availability makes it 
important to select a best available site that can execute 
the jobs with least amount of queuing times. Most of the 
high-throughput workflows executed through GADU 
involve running of bioinformatics tools on a large set of 
protein sequences. It is an embarrassingly parallel 
workload ideally suited for distributed computing, where 
a bunch of sequences are submitted to a Grid sites asking 
for a predefined number of CPUs. 

When a large number of seque

 

DU to run through a computationally intensive tool, 
for example running a BLAST [26] tool for NCBI’s non-
redundant protein sequences containing over 3 million 
sequences, it usually takes a few days to get the results 
for all the sequences. GADU uses the embarrassingly 
parallel method, where it keeps sending a small set of 
sequences as a batch job (e.g., 1000 sequences per site) to 
a suitable site from its pool of sites listed in the SC file.  

GADU has implemented a site selector which is 
scribed in detail in the paper on GNARE [12] and can 

be referred for a detailed understanding of the site 
selector implementation and various variables used as the 
criteria of selection. In brief, the site selector has a 
daemon that submits a small test job on a predefined 
interval of time that tests for availability of a site, data 
transfer, tools installed on a site, and the result of the test 
job submitted. These variables are very useful in selecting 
a site in the initial stages of big run such as BLAST for 
millions of sequences. As the jobs are being submitted to 
these various sites, the site selector dynamically tunes 
itself and gives priority to the sites based on the 
performance of the previous jobs at these sites, and also 
automatically eliminates any site that fails during runs. 
The site selector also looks at the local condor queue to 
get an estimate of the number of jobs running or in queue 
at the various sites. The site selector doesn’t pick a site 
for the next job if more than a predefined number of jobs 
are sitting idle in the condor queue at that site, assuming 
that the site is perhaps busy currently. The fundamental 
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scientific workflows 
on Grid. 
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(TG) 

Resource N (Jazz)

Figure 4:  GADU using different Grid resources. 
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selection criterion is very simple, select a site that 
successfully completes previously submitted jobs and 
send more jobs to those sites that are completing the jobs 
faster, at the same time not overloading the remote queue. 
The specific times involved in each step of the workflow 
such as time taken by data transfer or tool execution are 
currently not taken into account, and the overall time 
from submission to the return of output file are 
accounted. 

The data from information services such as GridCat 
fro

. Results 

ADU is extensively used by the bioinformatics group 
at 

sce

m OSG are also used to eliminate any site that may 
have gone down for maintenance or if any of the services 
are not working. Figure 4 shows a site selector in 
GADU’s configuration. 
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G
Argonne National Laboratory for building applications 

for the high-throughput analysis of genomes. 
Applications such as PUMA2 [27], Pathos [28], Target 
[29], Chisel [30], and GNARE’s prototype for user-
submitted genomes regularly use GADU.  

Figure 5 shows GADU’s performance in three 
narios. GADU was first used to run BLAST on the 

Jazz cluster for 1.4 million sequences in the NCBI non-
redundant database of protein sequences to compare 
against itself (In these BLAST runs, for N number of 
sequences, N2 pair-wise sequence comparisons are 
performed, that is, each sequence in the database is 
compared against all other sequences as well as itself, 
though the comparison results against itself are not used 
often). It took 170 hours to process all the sequences 
using 200 reserved CPUs on the Jazz cluster. The 
projected amount of time required to run BLAST as the 
number of sequences increases from 1.4 to 1.5, 1.7 and 
3.1 million is shown in Figure 5. Once the first stable 

version of GADU was tested on the Jazz cluster, OSG 
(formerly known as GRID3) was added to the list of Grid 
resources in GADU.  A BLAST job run on the OSG 
resources that involved 1.7 million sequences took about 
208 hours to complete. GADU’s site selector was used 
for this job to pick the appropriate site for each batch job. 
On average 250 nodes were used at any given time. 
GADU’s access to the amount of compute resources has 
increased by the addition of OSG and TeraGrid resources 
together. But at the same time, the sequence data is 
growing exponentially. In the last BLAST run, 3.1 
million sequences took only 144 hours using more than 
30 OSG sites, 5 TeraGrid sites and 35 CPUs from Jazz, a 
significantly shorter time compared to the projected time 
using only OSG. These sites were used based on 
opportunistic availability and the number of CPUs used 
varied from 400 to 500 CPUs (500 was set as collective 
Maximum number of CPUs for this run – to control the 
load on the submit host used for the run). The site selector 
in GADU helped in picking the right resources among the 
various sites from different Grids. It was observed that 
the 64bit processor based sites in the TeraGrid gave better 
throughput compared to the 32bit processor based sites 
across all the grids, as BLAST performed faster on 64bit 
processors. When the number of jobs submitted to each 
Grid or the Jazz cluster is compared, more jobs were 
submitted to the OSG sites, as GADU was able to use 
more than 30 different sites in OSG compared to 5 sites in 
the TeraGrid. 

Apart from BLAST, GADU has also run other 
bioinformatics tools such as BLOCKS, PFam, Chisel, and 
InterPro on various Grids to which it has access. 

Various types of error checking are performed on the 
jobs to provide fault tolerance. The errors that are 
reported by the GRAM (e.g., a site is not reachable – goes 
down, tool not installed, data transfer failures) are 
automatically detected by Condor-G and a ‘rescue’ file is 
created in order to resubmit the jobs. For the errors where 
GRAM doesn’t report failures; for example, if a node 
runs out of memory and fails to complete the job, or data 
transfer errors, GADU has application specific parsers 
that perform detailed sanity check on the output data. Due 
the diversity of the grid resources, we have found new 
unanticipated failures of the jobs that we identify only 
later during the actual use of the results by various 
applications. But with experience and repeated runs, we 
are able to identify most type of failures and use these 
heterogeneous grid resources more effectively. 

GADU’s ability to use multiple Grids has made it 
possible to analyze the biological data much faster and 
help the biologists in their scientific discoveries. GADU 
has been successfully used by many other groups and 
projects such as the NIH Midwest Center for Structural 
Genomics (MCSG) [32], the NIH Great Lakes RCE for 
Biodefense and Emerging Infections [33], MetaGenome 

Figure 5: GADU’s performance in using 
different Grid resources for running BLAST. 
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project from the DOE Microbial Genome program [34], 
and Shewanella Consortium for the analysis of 
Shewanella genomes [35]. 

 
6. Related Work 

 
There are many Globus based execution management 

tools such as Condor-G, Grid(Lab) Resource 
Management System [36], Grid Service Broker [37], 
GridWay [38], VDS and others. Most of these systems 
are used for execution management and scheduling of the 
jobs on the various Grid resources. Though most of these 
allow easy access of Grid resources for applications, 
GridWay has many other features similar to GADU that 
help users for meta-scheduling and automated execution 
of jobs on heterogeneous grid resources. It provides fault 
recovery and allows users to migrate their jobs in case of 
failures.  

GADU is also designed for Globus based Grids and 
utilizes some of these execution management systems 
such as Condor-G, VDS and many other softwares that 
are wrapped into Virtual Data Toolkit (VDT) to further 
automate the large workloads of running bioinformatics 
tools. One of the advantages of GADU is the use of VDS 
that allows expression of workflows in a higher level 
language that gets mapped onto a specified Grid. GADU 
automates the steps involved in utilizing the 
heterogeneous Grid resources. Automation of site-
selection for new jobs as well as for migration of failed 
jobs is a unique feature of GADU. It utilized the features 
of VDS effectively to execution large workloads run for 
weeks and that requires dynamic site-selection and fault 
tolerance throughout the run. It can easily add new sites 
to the pool of sites even during the run. GADU 
demonstrates the advantages of using VDS to make its 
applications interoperable across heterogeneous 
resources. 
 
7. Conclusions 
 

In this paper we described the capabilities of GADU to 
use multiple Grid resources simultaneously for running 
bioinformatics tools. The exponential growth in genomic 
sequence data requires distributed Grid resources for its 
faster analysis using a variety of Bioinformatics tools and 
algorithms. Use of the Pegasus-based VDS system allows 
GADU to add more Grid sites easily into its pool of 
computational resources. It shows the interoperability 
achieved by GADU In this paper we are not concentrating 
on the other important features of VDS such as data 
provenance; we describe only those features that help in 
using multiple Grid resources through GADU. 

Currently GADU is used to support various 
applications built by the Bioinformatics group at Argonne 

National Laboratory. In future, we plan to provide 
services to the bioinformatics community via a Web-
based gateway, thus allowing users to submit and analyze 
their sequence data by a variety of tools and algorithms 
using Grid resources. A prototype of such a system has 
been built under the framework of GNARE’s User 
Models. From the examples provides in the Results 
section, we can see that using multiple Grids has 
significantly reduced the total amount of time taken to 
execute BLAST. 

The availability of GADU to the public usage is 
currently only via GNARE portal which is widely used 
for the analysis of user submitted genomes.  
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